UNSTEADY TURBULENT FLOW IN A PIPE
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Unsteady turbulent, incompressible fluid flow homogeneous along the length is considered in a circu-
lar cylindrical pipe. The formulation of the problem is based on using the Reynolds equations and the en-
ergy balance equation of turbulence, which are closed by additional semiempirical relations. Specific com~
putations of the nonstationary turbulent flow based on such an approach are carried out for the case when
the discharge in the tube varies with time and performs harmonic oscillations with a finite amplitude around
some mean value. The mathematical turbulent flow model under consideration was first tested by com-
paring the calculated average velocity and turbulent energy distributions with the Laufer test results [1]
for stationary flow in a pipe.

Homogeneous flow along the length in a pipe is one of the simplest shear flow examples. In contrast
to boundary layer flow, its average characteristics depend only on one space coordinate (the distance from
the wall or the radius). Meanwhile, this problem actually contains all the fundamental difficulties, in prin-
ciple, which are encountered in studying flows with shear. Hence, a study of the specific influence of non-
stationarity on turbulent shear flows is most appropriately started with the study of a homogeneous flow
in a pipe. )

Many investigators have studied the influence of nonstationarity on the turbulent flow in pipes and
channels. Thus, J. Daily et al. [2], G. Franke [3], N. A. Panchurin [4], etc., studied such a problem for
the case of flow in circular pipes, However, in the theoretical investigations of unsteady flow in pipes. known
to the authors a semiempirical theory of turbulence was applied which uses the Boussinesq representation
-of the turbulent viscosity coefficient (sufficiently rough assumptions have been made relative to the latter).
Meanwhile, it is doubtful that this theory could reflect those complex turbulence transport and diffusion
processes which should hold in a nonstationary turbulent flow well enough, By virtue of the above, it is
pertinent in this case to turn to modern statistical models of turbulent flow constructed in application to the
transport equations and, in particular, to the turbulent energy transport equations,

Underlying the approach used herein are the ideas of A. N. Kolmogorov, in conformity with whichthe
fundamental statistical characteristics of a turbulent flow can be expressed in terms of the energy and scale
of the turbulence. This direction has been developed by V. G. Vager and D. L. Laikhtman {5} and V. G.
Levin [6] in application to steady flow in pipes.

E. V. Eremenko used such an approach in studying unsteady flows when analyzing plane-parallel flows
in channels. He computed the kinematic characteristics in a plane tube with harmonically varying pressure
gradient in [7]. He extracts the diffusion of the pressure fluctuation energy in the equation and inserts an
approximate expression for it separately. The coefficient of turbulent viscosity is taken proportional to
the so-called turbulent Reynolds number, and the coefficient of turbulent diffusion in conformity with G. S.
Glushko [8]. The coefficients of turbulent exchange thereby turn out ta be related to the distribution of tur-
bulence energy in space and time. However, it should be noted that the proportionality of the coefficient
of turbulent viscosity to the turbulent Reynolds number is not conserved near the wall (low turbulent Rey-
nolds numbers), where the main part of turbulence energy generation occurs.

The coefficient of turbulent viscosity (and the coefficient of turbulent diffusion in terms of it) is taken
herein as some function of the turbulent Reynolds number. G. S. Glushko [8] first mentioned such depen-
dences in an analysis of turbulent shear flow in the boundary layer, and he constructed this dependence in
the form of a piecewise-smooth function on the basis of numerous experimental results. It is here pro-
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posed to approximate this dependence by some smooth functions with asymptotic y® as y— 0, where y is the
distance from the tube wall.

1. Fundamental Equations and Additional Relationships

For an incompressible fluid, the Reynolds and turbulence energy e equations for axisymmetric motion
in a cylindrical coordinate system (x, r, ¢) are

d<u,d (O 1 a<p> <w,)
dtr - : = ""T (V2 {uy 73 ) +
1 8 / - ' .
T (D) o () — e (— ()

diuyy o qud <ug >
-t = (V <u¢>>— w )+

2 (= ") o (— CuusS) + T(— Cuy'ug'y)

d<ux> 1 9 v
- ;5’+vvz<ux>+-}—%( FQuy ) + 5 (=)

(r w)+ 57 (’ {ugd) =

e >-T~«r@+%»—

— 52y 282y &2
., 6(u> 0<u)
— U u">( ar + oz )+v61[6ze+
a<x’2>
b (r<uxur>)]+——r[§,e+
d , <u,"%
+ B Y+ T Uy — =2 — A (L.1)

Here t is the time, the x axis is directed along the tube axis, ux, Ur, uy are velocity vector compo-
nents, p is the pressure, e is the turbulence energy, p is the density, v is the kinematic viscosity (the angu-
lar brackets denote average quantities,
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Let us examine the nonstationary turbulent motion of an incompressible fluid in a circular cylindrical
tube of radius R. Let us introduce the following assumptions: there exists axial flow symmetry, the flow
is statistically homogeneous along-the tube axis (i.e., the average values of the velocity components and
the products of their pulsations are independent of the variable x), and the tangential component of the av-
erage velocity is zero. It can be considered that these assumptions are satisfied for the flow in a circular
tube at sufficiently long ranges from the inlet and exit sections. Under these assumptions, it follows from

the continuity equation and the condition of impermeability on the tube wall that <uy >=0. Consequently,
the system (1.1) simplifies noticeably and becomes
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u[ 7 Furthermore, it can be shown that the pressure gradientd<p>/
uy ’a}% % 0x is a function of only the time t. Indeed, by integrating the second
08 A 26 equation of the system (1.2) with respect to r we obtain
2 n 12 13
7 , u —u
// 0 / : (8>~ <po> + oy’ +p{ L2202 gr g
' R
v4 0z 77 Here <py>=<p(R, t, x}>. Since <ur'?> and <u,'?> are inde-
Z 7 pendent of x, then 8 <p>/8x=08<py>/0x and d<p>/8x is a function of
7 \/ v only t and x. And then there results from the first equation of the sys-
044 tem (1.2) that 9<p>/9x is a function of just the time.
2 02 | !
0404 Now, let us examine the terms describing the work of the viscous
Y | | stresses. They are represented by the components in the square
e Lad 04 y° brackets in the turbulent energy equation of the system (1.2). It is
Fig. 2 known that the work of the viscous stresses is essential only near the

tube wall. By using the asymptotic representation ([9], p. 236) of the
energy pulsation component near the wall, if can be shown that the fundamental contribution to the work
of the viscous stresses is introduced by the term (/1) 8 (rde/0r)/8r. Taking this circumstance into ac-
count, let us furthermore neglect the remaining members of the work of the viscous stresses.

Only two differential equations of the system (1.2) are needed for a further analysis of the flow: the
first and the third, i.e., the Reynolds equation for the longitudinal velocity and the turbulence energy equa-
tion. However, the number of unknowns in these equations exceeds the number of equations. Following
G. 8. Glushko [8], let us use semiempirical hypotheses to close the system:

1) Momentum transfer is accomplished by gradient type diffusion
—Su, uy'y = ed {uy)l or (1.3)

2) The transfer of total turbulent energy is described similarly as a gradient type diffusion process:

de o, v de
Vi ulle + -2 o
3) The process of turbulence energy dissipation is defined by the relationship

A =CDe/L? (1.5)

Here € is the coefficient of turbulent viscosity, D is the total diffusion coefficient, L is the scale of
turbulence, and C is a universal constant.

The three relationships presented do not evidently contain new information, in substance, if only ¢,
D and L have not been defined. The empiricism of these formulas is due to the mentioned coefficients and
the length scale being determined by involving experimental results. It turns out that by being guided by
physical considerations, relatively simple dependences for €, D,and L can be constructed. Thus, A, N.
Kolmogorov proposed considering € ~VeL. By analyzing the turbulent flows in the boundary layer, G. S.
Glushko [8] showed that the coefficient € can be represented as a function of just the turbulent Reynolds
number Ret=veL/v.
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Let us examine the behavior of the turbulent viscosity coefficient

P-ﬁ in the near-wall domain in more detail by representing it as a power-

law dependence £~y where y is the distance from the wall. As fol-

lows from the continuity equation for the velocity pulsations and the con-

dition that they be zero at the wall itself (at y =0), the exponent is n= 3.

There are both experimental and theoretical investigations indicating

an exponent n=3 favorably (see [9, 10], say). This is also verified by

7 22 04 06 848 y° a recent investigation [11] of the flow in the near-wall domain, based
Fig. 4 on the principle of maximum stability.
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According to the experimental results of Laufer (see [9]), e ~y2
in the near-wall domain. Processing of numerous experiments per-
formed by G. S. Glushko [8] yields L~y as y— 0. It can hence be concluded that the asymptotic £— Re;%/?
should hold as Re{— 0 (under the assumption that the coefficient € depends only on the turbulent Reynolds
number). Taking account of this circumstance, the dependence & =&(Ret) which G. S. Glushko [8] approxi-
mated by a piecewise-smooth function, is approximated herein by a smooth function with the asymptotic
e~Ret’? as Rey— 0:
e/v = a Re; [1 — exp (— o, Re;?) +o3Re"sexp (— ¢, Re;?)l (1.6)

For gy =4-10"%, 0,=2.1-10"4, 03=2-10"2 and & =0.2 formula (1.6) agrees well with the dependence
proposed by G. S. Glushko everywhere except in the direct neighborhood of the point Ret=0. Let us recall
that € ~ Ret? as Ret— 0 for G. S. Glushko. Since £/y =aoy Ret® ? +O(Ret’) as Rey— 0 in conformity with (1.6),
then the coefficient of turbulent viscosity in the direct neighborhood of the point Ret =0 is determined by
the constant g;. The value 03=2 10~ is determined by processing the Laufer [1] experimental results for
a circular tube. Let us note that (1.6) yields the asymptotic £/v =aRet for large Ret.

Let us also assume that the total coefficient of turbulence energy diffusion is related to the coeffi-
cient of turbulent viscosity by the linear dependence

D=~ +me (1.7)

where m is a constant coefficient. The reciprocal quantity to m is the analog of the turbulent Prandtl num-
ber.

No successful and sufficiently reliable theoretical dependence has yet been found for the scale of tur~
bulence L which would relate it to the other flow characteristics. In this connection, let us approximate
the scale L herein by the polynomial expression

LIR=1y4+lL@/R?2 41, (/R* (1.8)

It is easy to note the analogy between this expression and the known Nikaradze formula for the mixing
path length for flow in a tube.
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Two of the constants I, I, I, can be determined by using the empirical dependence for L from [8]
for r=R, namely

L(R) =0,dL/drjpp = —1

Let us hence assume that the scale of turbulence L in the neighborhood of the wall in boundary-layer
flow and in the flow in a tube are identical. The third constant 7, was determined from the condition that
e/usR~ avel/uxR~ 0.07 at r=0. Such a value of £/u,R was calculated by Heintze [12] for the middle of
a tube according to the Laufer {1] data. Therefore, the following values of the parameters have been ob-
tained: 7,=0.37, ,=—0.24, I,=—0.13. The constants C and m, corresponding to the mentioned values of
the remaining constants, equal C =3.93 and m=0.4 in conformity with [8].

2. Formulation of the Problem

Summarizing the above, we arrive at the equations

du 41 2 du 1 ap
I A o
. 2.1)
de 1 @ de du \2 e (
BF—T*ar’D*ar“(w) —CD4

Here the coefficients €, D and the scale L are determined by the expressions (1.6)-(1.8). To sim-
plify the notation, the averaging signs and the subscript x for the single non-zero component uy of the av-
eraged velocity vector have been omitted.

The boundary conditions will be the following:

-g%:g;—=0 for r=20, u=e=0 for r=R (2.2)

For r=0 the conditions (2.2) follow from the flow symmetry relative to the tube axis, and for r=R
from the condition of adhesion to the smooth wall.

Periodic motion in a tube can be examined on the basis of (2.1) and (2.2). In the more general case,
the initial conditions

u=uf(), e=e() for t=20 (2.3
must be appended.
To solve specific problems, the pressure gradient or the discharge as a function of the time must

still be given in addition to the mentioned conditions. The discharge

R
Q (&) = 2x { urdr (2.4)

is considered given herein.

The independence of the discharge from the longitudinal coordinate results from the continuity equa-
tion and expresses the fact that the discharge in any section of a rigid tube is identical for an incompress-
ible fluid. Giving the discharge permits elimination of the pressure p from the considerations, which will
now generally be among the desired functions.

903



Indeed, by integrating the first equation of (2.1) under the conditions (2.2) and (2.4) we obtain

1t 9p_ 1 (9Q u]
— 2 (S —emrv 5| ) (2.5)

3. Energy Dissipation

Involvement of the turbulence energy equation permits decoding the mechanism of energy conversion
in a turbulent flow, as well as calculating the energy loss. Let us integrate the equations of the system
(2.1) over the tube section by first multiplying the first equation by u. Adding them, we obtain the integral
equation of the total energy balance after several manipulations

——Q% —zn_Sp\z +e>rdr—|—2ng[ ( )-I—PCD }rdr (3.1)

Here the additional condition 8e/dr =0 at r =R, which follows from the energy equation in the viscous
sublayer (D=p, e~y? as y— 0), is used in addition to (2.2).

The expression (3.1) admits of the following mechanical interpretation. The work of the pressure
is expended in changing the kinetic energy of the averaged and pulsation motions and in energy dissipation
into heat. A loss in mechanical energy evidently occurs only because of dissipation of the averaged and
pulsation motion energy. Therefore, the energy loss in a tube section of unit length is written as

N=2n0§[ (’3(;) +pCD ]rdr (3.2)

4. Flow with Periodically Varying Discharge (Numerical Solution)

The system (2.1) with the conditions (2.2), (2.3), (2.5), and the given discharge Q=Q(t) was solved
‘numerically by an implicit six-point finite-difference scheme used earlier to compute the flow in a boun-
dary layer [13]. The numerical solution of the stationary problem found by the method build-up using the
given finite-difference scheme generally agrees satisfactorily with the Laufer [1] experimental results
This is indicated by the comparison performed for the Reynolds number Rey=2v,R/y =4.232 - 10° (Fig. 1).
Here v, is the average velocity over the cross section. The notation

uy=u(0,1), wu2=|vu/0rlp, ¥ =1—r/R, yt =uy/v
is used in Fig. 1, where u*2 is the dynamic velocity squared and the solid lines are the computational re-
sults. As is seen, good agreement between the calculated velocities and the test results is observed both in
the core of the flow and in the near-wall domain. :

The computed curves of the turbulent energy distribution are also close enough to the experimental
results. In the neighborhood of the wall the numerical solution discloses the characteristic maximum ob-
served in experiment.

Now, let us turn to the nonstationary flow. Let the discharge vary according to the harmonic law

Q(t) = Qo (1 4 asin vl
(Qy = nR™,y, © = 2a/T)

Here Q, and a are constants. Let us examine the transient because of which the initial stationary mo-
tion becomes periodic. It is easy to note that all the initial data can be expressed in the form of three di-
mensionless parameters (Rey, @, wy=w (2R)%/p) which determine the solution of the nonstationary problem
under consideration.

(4.1)

The process of building up the periodic motion occurs sufficiently rapidly. Specific computations show
that fluid motion becomes practically periodic after the lapse of 1-2 periods T from the mmal time cor-
responding to the stationary motion.

The computed velocity profiles in both the main and the near-wall flow domains are shown in Fig. 2
for Rey=10%, a=0.5, w,=10° for three characteristic times in one period of oscillation (i.e., for three dif-
ferent oscillation phases ¢g=wt) in steady periodic motion. Let us turn attention to the fact that reverse
flows are possible in the near-wall region at separate times in unsteady motion, although the instantaneous
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mean velocity over the section remains positive here during the whole motion (¢<1). Presented in Fig. 3
are the turbulence energy distributions for the same conditions. Rebuilding of the energy distribution be-
cause of the nonstationarity occurs first in the near-wall domain.

Now, let us examine the case when the discharge varies according to the law Q=@ sinwt (Q; =rR%v,),
i.e., the case when the discharge in the tube varies periodically around the zero value. Computations have
shown that for sufficiently high values of wy the maximum value of the velocity occurs at the wall in this
case (Fig. 4, Re; =2v{R/v=0.5-10%, wy=10%). Such a picture was observed in the Franke [3] experiments.
As the dimensionless frequency wy grows, the velocity maximum continues to be shifted towards the wall
and the velocity profile becomes almost uniform in the main part of the section. In this case, a periodic
boundary layer exists in the near-wall domain, which does not already enclose the whole tube cross section.

Knowing the velocity distribution, we can calculate the tangential stress on the wall by means of the
formula 7,=—pdu/0r| =g and the energy dissipation by means of (3.2). Represented in Figs. 5 and 6 are
the results of their evaluation for Rey=10%, a=0.5,for w;=10% (curve 1) and for w;=10% (curve 2), where
7¢° and N° denote the tangential stress and energy dissipation referred to their values in steady motionwith
discharge @, respectively. )

It can be noted in Fig. 5 that the frequency of discharge fluctuation influences both the amplitude and
phase shift of the tangential stress.

The authors are grateful to R. T. Chernyshev for performing the computations presented here.
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