
UNSTEADY TURBULENT FLOW IN A PIPE 
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Unsteady turbulent, incompress ible  fluid flow homogeneous along the length is considered in a c i rcu-  
l a r  cylindrical  pipe. The formulation of the problem is based on using the Reynolds equations and the en- 
ergy balance equation of turbulence,  which are  closed by additional semiempir ica l  relat ions.  Specific com-  
putations of the nonstat ionary turbulent flow based on such an approach are  ca r r i ed  out for the case when 
the discharge in the tube var ies  with time and pe r fo rms  harmonic oscillations with a finite amplitude around 
some mean value. The mathematical  turbulent flow model under considerat ion was f i rs t  tested by com-  
paring the calculated average velocity and turbulent energy distributions with the Laufer tes t  resul ts  [1] 
for stat ionary flow in a pipe '. 

Homogeneous flow along the length in a pipe is one of the s implest  shear  flow examples.  In contras t  
to boundary layer  flow, its average charac te r i s t i c s  depend only on one space coordinate (the distance f rom 
the wall or  the radius).  Meanwhile, this problem actually contains all the fundamental difficulties, in pr in-  
ciple, which a re  encountered in studying flows with shear .  Hence, a study of the specific influence of non- 
stat ionari ty on turbulent shear  flows is most  appropriately s tar ted  with the study of a homogeneous flow 
in a pipe. 

Many invest igators  have studied the influence of nonstationarity on the turbulent flow in pipes and 
channels. Thus, J. Daily et al. [2], G. Franke [3], N. A. Panchurin [4], etc.,  studied such a problem for 
the case of flow in c i rcu la r  pipes. However,  in the theoret ical  investigations of unsteady flow in pipes, known 
to the authors a semiempi r ica l  theory of turbulence was applied which uses  the Boussinesq representa t ion 

"of the turbulent v iscosi ty  coefficient (sufficiently rough assumptions have been made relat ive to the latter),  
Meanwhile, it is doubtful that this theory could ref lect  those complex turbulence t ranspor t  and diffusion 
p rocesses  which should hold in a nonstat ionary turbulent flow well enough. By virtue of the above, it is 
per t inent  in this case to turn to modern stat is t ical  models of turbulent flow constructed in application to the 
t r anspor t  equations and, in par t icular ,  to the turbulent energy t ranspor t  equations. 

Underlying the approach used herein are  the ideas of A. N. Kolmogorov, in conformity with whichthe 
fundamental s tat is t ical  cha rac te r i s t i c s  of a turbulent flow can be expressed  in t e r m s  of the energy and scale 
of the turbulence.  This direction has been developed by V. G. Vager and D. L. Laikhtman [5]' and V. G. 
Levin [6] in application to steady flow in pipes. 

E. V. Eremenko used such an approach in studying unsteady flows when analyzing plane-paral le l  flows 
in channels.  He computed the kinematic charac te r i s t i c s  in a plane tube with harmonical ly varying p ressu re  
gradient in [7]. He extracts  the diffusion of the p res su re  fluctuation energy in the equation and inser ts  an 
approximate express ion for it separate ly .  The coefficient of turbulent viscosi ty  is taken proportional  to 
the so-ca l led  turbulent Reynolds number,  and the coefficient of turbulent diffusior~ in conformity with G. S. 
Glushko [8]. The coefficients of turbulent exchange thereby turn out ~ be re la ted to the distribution of tu r -  
bulence energy in space and t ime. However, it should be noted that the proportionali ty of the coefficient 
of turbulent viscosi ty  to the turbulent Reynolds number is not conserved near  the wall (low turbulent Rey- 
nolds numbers) ,  where the main part  of turbulence energy generation occurs .  

The coefficient of turbulent viscosi ty  (and the coefficient of turbulent diffusion in terms of it) is taken 
herein as some function of the turbulent Reynolds number.  G .S .  Glushko [8] f i rs t  mentioned such depen- 
dences in an analysis  of turbulent shear  flow in the boundary layer ,  and he constructed this dependence in 
the fo rm of a p iecewise-smooth  function on the basis of numerous experimental  resu l t s .  It is here p ro -  
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posed to approximate this dependence by some smooth functions with asymptot ic  y3 as y--- 0, where y is the 
distance f rom the tube wall. 

i .  F u n d a m e n t a l  E q u a t i o n s  a n d  A d d i t i o n a l  R e l a t i o n s h i p s  

For  an incompressible fluid, the Reynolds and turbulence energy e equations for ax isymmetr ic  motion 
in a cylindrical  coordinate sys tem (x, r ,  @ are  

d<ur> <%>i 2 i a <p> ( <u~> 1 
dt r = p Or F v , V  2 <ur> - -  r~ ] -~- 

O 1 " 
+ + ~ - ( - -  r <u/2>) + ~ - ( - -  <u/u~'>) -- -7-(-- <uJ2)) 

d <u~> <ur> <ur ( <%> 1 
dt  -~ r v.Vz<u~>-- rZ ] +  

+ + <uo'o:>l + <-  

d <ux> tO<p> ~-~-r o 
dr p o~ + vV~<u~>+ ( - - r < u / u ~ ' > ) + - ~  ( - < u j ~ > )  

0 
0-7 (r <u~>) + ~-~ (r <u~>) = 0 

d-E ~-Z 
0 <Ur> <ur> 

- -  <u~'~>a ]~-~ "----~> - -  <u/~>--Y;-~ - -  <u*'2> r 

< u x ' u / > ( ~  a % > ,  a [ o  e 
-- -F - -y~  } -k v ~-~ LT~ -k 
a <%'.> i a 1 ~ o r e  

H O+ + - 7 -  ( r (ux 'u />)~  § 
+ f--T<u#'u/> A - T - g T - r ~ u ,  > _ -- A (1.1) 

Here t is the t ime, the x axis is directed along the tube axis,  u x, Ur, u~ a re  velocity vec tor  compo- 
nents,  p is the p re s su re ,  e is the turbulence energy,  p is the density, p is the kinematic viscosi ty  (the angu- 
lar  brackets  denote average quantities, 

d o 0 o <u~'~>+<ur'~>+ <u. 'b  
dt ~ at }- <Ux> -~- <Ur> , e 2 

0 2 0 s t 0 F2 Ou x, s 

2 / f  a~,, ~ ,~  / f  a . r  �9 ~,,, ~% 

\ \  T -- - ~ ' 1  / -t- < ' , I T  -I- ,a~ -7 

Let us examine the nonstationary turbulent motion of an incompressible  fluid in a c i rcu la r  cylindrical  
tube of radius R. Let us introduce the following assumptions:  there exists axial flow symmet ry ,  the flow 
is stat ist ically homogeneous along.the tube axis (i.e., the average values of the velocity components and 
the products of their  pulsations a re  independent of the variable x), and the tangential component of the av-  
erage  velocity is zero.  It can be considered that these assumptions are  satisfied for the flow in a c i rcu lar  
tube at sufficiently long ranges  f rom the inlet and exit sections.  Under these assumptions,  it follows f rom 
the continuity equation and the condition of impermeabi l i ty  on the tube wall that <Ur > =0. Consequently, 
the sys tem (1.1) simplifies noticeably and becomes 

a<,~> _ !  O_r{~ o<,~> ) I o<m 
Ot " - -  r ar \ Or <Ur'Ux'> p am 

I o<p> ~ I Or<~/~),._<%%. .... 0 
p Or r Or r 

a-T = - -  r ur' e' H- - -  <t~'u/> l -F 
v i'O 0 - -  O~ - ,~-I a ] 

-7-[-57-r~7-r e t ~ r ~  r~Ur >~--'~-r (u, 's) --A (1.2) 
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Fur the rmore ,  it can be shown that the p ressu re  gradient  8 < p >/  
~x is a function of only the t ime t. Indeed, by integrating the second 
equation of the sys tem (1.2) with respec t  to r we obtain 

<P>--<Po}-4-P<u~%-4-P " ~ " r d r = O  
R 

Here < P0 > = < p(R, t, x) >. Since < ur '2 > and < u~o'2 > are  inde- 
pendent of x, then ~ < p >/Ox = 8< P0 >/Ox and ~ < p >/ax ' i s  a function of 
only t and x. And then there resul ts  f rom the f i rs t  equation of the sys -  
t em (1.2) that ~ < p >/ax is a function of just the t ime.  

Now, let us examine the t e r m s  describing the work of theviscous  
s t r e s se s .  They are  represen ted  by the components in the square 
brackets  in the turbulent energy equation of the sys tem (1.2). It is 
known that the work of the viscous s t r e s ses  is essential  only near the 
tube wall. By using the asymptotic representa t ion ([9], p. 236) of the 

energy pulsation component near  the wall, it can be shown that the fundamental contribution to the work 
of the viscous s t r e s se s  is introduced by the t e rm (v/r) 3 ( rae/Or) /~r .  Taking this c i rcumstance  into ac-  
count, let us fu r thermore  neglect the remaining members  of the work of the viscous s t r e s ses .  

Only two differential equations of the sys tem (1.2) are  needed for a fur ther  analysis of the flow: the 
f i rs t  and the third,  i.e., the Reynolds equation for the longitudinal velocity and the turbulence energy equa- 
tion. However, the number of unknowns in these equations exceeds the number of equations. Following 
G. S. Glushko [8], let us use semiempir ica l  hypotheses to close the sys tem:  

1) Momentum t rans fe r  is accomplished by gradient  type diffusion 

- - ( u r '  Ux'> = eO <ux>/ Or (1.3) 

2) The t rans fe r  of total turbulent energy is descr ibed s imi lar ly  as a gradient  type diffusion process :  

v ~- 7 -  u r' e' ~ = D O e  0~- (1.4) 

3) The process  of turbulence energy dissipation is defined by the relationship 

A = CDe / L ~ (1.5) 

Here e is the coefficient of turbulent v iscosi ty ,  D is the total diffusion coefficient, L is the scale of 
turbulence,  and C is a universal  constant.  

The three relat ionships presented do not evidently contain new information, in substance, if only r 
D and L have not been defined. The empi r i c i sm of these formulas  is due to the mentioned coefficients and 
the length scale being determined by involving experimental  resul ts .  It turns out that by being guided by 
physical  considerat ions,  relat ively simple dependences for 5, D, and L can be constructed.  Thus, A. N. 
Kolmogorov proposed considering ~ ~q'~'L. By analyzing the turbulent flows in the boundary layer ,  G. S. 
Glushko [8] showed that the coefficient ~ can be represen ted  as a function of just the turbulent Reynolds 
number  Ret = ~-L' /v.  
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Let us examine the behavior of the turbulent v iscos i ty  coefficient 
in the near-wal l  domain in more  detail by represent ing  it as a power-  
law dependence 8 ~ yn, where y is the distance f rom the wall. As fol-  
lows f rom the continuity equation for the velocity pulsations and the con- 
dition that they be zero at the wall i tself (at y =0), the exponent is n_> 3. 
There  a re  both experimental  and theoret ical  investigations indicating 
an exponent n=3  favorably (see [9, 10], say). This is also verif ied by 
a recent  investigation [11] of the flow in the near-wal l  domain, based 
on the principle of maximum stability. 

According to the experimental  resul ts  of Laufer  (see [9]), e ~y2 
in the near-wal l  domain. P rocess ing  of numerous experiments  pe r -  

formed by G. S. Glushko [8] yields L ~ y  as y ~  0. It can hence be concluded that the asymptotic  8 ~  Ret 3/2 
should hold as Ret-* 0 (under the assumption that the coefficient 8 depends only on the turbulent Reynolds 
number). Taking account of this c i rcumstance ,  the dependence ~ =8(Ret) which G. S. Glushko [8] approxi-  
mated by a p iecewise-smooth  function, is approximated herein by a smooth function with the asymptotic  
8 ~  Ret 3/2 as R e t ~  0: 

8 / v ~ a Ret [i -- exp (-- (~ Ret 2) ~- cr 1/j exp (-- cz Bet2)] (1.6) 

For  ql =4-  10 -4, a 2 =2.1 �9 10 -4, q3 =2 �9 10 -2 and a =0.2 formula (1.6) agrees  well with the dependence 
proposed by G. S. Glushko everywhere  except in the direct  ne!~hborhood of the point Ret=0.  Let us recal l  
that ~~  Ret 2 as Ret-* 0 for G. S. Glushko. Since 8 / v = a q 3 R e t  3/2 +O(Ret  3) as R e t - - 0  in conformity with(1.6), 
then the coefficient of turbulent v iscosi ty  in the direct  neighborhood of the point Re t=0  is determined by 
the constant a 3. The value a 3 =2 �9 10 -2 is determined by process ing  the Laufer [1] experimental  resul ts  for  
a c i rcu la r  tube. Let us note that (1.6) yields the asymptotic 8 I v  =aRet  for large Re t. 

Let us also assume that the total coefficient of turbulence energy diffusion is related to the coeffi-  
cient of turbulent v iscosi ty  by the l inear  dependence 

D = v ~- me (1.7) 

where m is a constant coefficient. The rec iprocal  quantity to m is the analog of the turbulent Prandtl  num- 
ber.  

No successful  and sufficiently reliable theoret ical  dependence has yet  been found for  the scale of tu r -  
bulence L which would re la te  it to the other flow charac te r i s t i c s .  In this connection, let us approximate 
the scale L herein by the polynomial expression 

L / R  = 10 - [ - l~(r /R)  2 + l ~ ( r / R ) ,  (1.8) 

It is easy to note the analogy between this expression and the known Nikaradze formula for the mixing 
path length for flow in a tube. 
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Two of the constants 10, 12, l 4 can be determined by using the empir ical  dependence for L f rom [8] 
for r = R, namely 

L (R) = 0 ,  dL / dr[~=R = - -  i 

Let us hence assume that the scale of turbulence L in the neighborhood of the wall in boundary- layer  
flow and in the flow in a tube a re  identical. The third constant l 0 was determined f rom the condition that 
r  ~4e"L/u .R~ 0.07 at r =0. Such a value of 8 / u , R  was calculated by Heintze [12] for the middle of 
a tube according to the Laufer  [1] data. Therefore ,  the following values of the pa ramete r s  have been ob- 
tained: /0=0.37, /2 = - 0 . 2 4 ,  l 4 = - 0 . 1 3 .  The constants C and m, corresponding to the mentioned values of 
the remaining constants,  equal C =3.93 and m = 0 . 4  in conformity with [8]. 

2 .  F o r m u l a t i o n  o f  t h e  P r o b l e m  

Summariz ing the above, we a r r ive  at the equations 

Ou t o . Ou i Op 
~-t = - 7 - ~ -  r tv + e) Or p oz 

Here the coefficients a, D and the scale L are  determined by the express ions  (1.6)-(1.8). To sire-  
plify the notation, the averaging signs and the subscr ipt  x for the single non-zero  component u x of the av-  
e raged  velocity vec tor  have been omitted. 

The boundary conditions will be the following: 

~u Oe 
0--~-=-~-=0 for r = 0 ,  u = e = 0  for r-----R (2.2) 

For  r = 0 the conditions (2.2) follow f rom the flow symmet ry  relat ive to the tube axis, and for r = R 
f rom the condition" of adhesion to the smooth wall. 

Per iodic  motion in a tube can be examined on the basis of (2.1) and (2.2). In the more  general  case,  
the initial conditions 

u = u (r), e = e(r) for t = 0 (2.3) 

must  be appended. 

To solve specific problems,  the p re s su re  gradient  or  the discharge as a function of the time must  
still be given in addition to the mentioned conditions. The discharge 

R 

2~ f urdr (2.4) Q (t) 
o 

is considered given herein.  

The independence of the discharge f rom the longitudinal coordinate resul ts  f rom the continuity equa- 
tion and expresses  the fact that the discharge in any section of a r igid tube is identical for an incompress -  
ible fluid. Giving the discharge permi ts  elimination of the p res su re  p f rom the considerat ions,  which will 
now general ly be among the des i red  functions. 
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Indeed, by integrating the f i r s t  equation of (2.1) under the conditions (2.2) and (2.4) we obtain 

i op i {OQ o~] " 
9 ox = 7"~ \-8-i- -- 2nRv aT-r r=R) (2.5) 

3 .  E n e r g y  D i s s i p a t i o n  

Involvement of the turbulence energy equation permits  decoding the mechanism of energy conversion 
in a turbulent flow, as well as calculating the energy loss .  Let us integrate the equations of the sys tem 
(2.1) over the tube section by f i rs t  multiplying the f i rs t  equation by u. Adding them, we obtain the integral 
equation of the total energy balance after  several  manipulations 

R R 

Op 'u~ e)rdr + 2n --~]r dr - - Q - ~ - = 2 a t - ~ t i P [ ' T ' +  I [ l* (~r )  ~A-pCD e (3.1) 
0 o 

Here the additional condition 0e/Or = 0 at r = R, which follows f rom the energy equation in the viscous 
sublayer  (D=v, eNy2 as y - -  0), is used in addition to (2.2). 

The expression (3.1) admits of the foIlowing mechanical interpretation. The work of the p res su re  
is expended in changing the kinetic energy of the averaged and pulsation motions and in energy dissipation 
into heat. A lo s s  in mechanical  energy evidently occurs  only because of dissipation of the averaged and 
pulsation motion energy.  Therefore ,  the energy loss in a tube section of unit length is writ ten as 

R 

JV = 2n I [  ~ (~r ) ~ q- pCD ~ ] r  dr (3.2) 
0 

4.  F l o w  w i t h  P e r i o d i c a l l y  V a r y i n g  D i s c h a r g e  ( N u m e r i c a l  S o l u t i o n )  

The sys tem (2.1) with the conditions (2.2), (2.3), (2.5), and the given discharge Q=Q(t) was solved 
n u m e r i c a l l y  by an implicit  six-point f ini te-difference scheme used ear l ie r  to compute the flow in a boun- 
dary layer  [13]. The numerical  solution of the stat ionary problem found by the method build-up using the 
given finite-difference scheme general ly agrees  sat isfactor i ly  with the Laufer [1] experimental  resul ts .  
This is indicated by the comparison per formed for the Reynolds number Re0=2v0R/v =4.232 �9 105 (Fig. 1). 
Here v 0 is the average velocity over the c ross  section. The notation 

u o = u(O, t), u* ~ = IvOu/Or[~-R, Y~ : l - - r / R ,  g+ = u , y / v  

is used in Fig. 1, where u .  2 is the dynamic velocity squared and the solid lines a re  the computational r e -  
suits.  As is seen, good agreement  between the calculated velocit ies and the tes t  resul ts  is observed both in 
the core of the flow and in the near-wal l  domain. 

The computed curves of the turbulent energy  distribution are  also close enough to the experimental  
resu l t s .  In the neighborhood of the walt the numerical  solution discloses the charac te r i s t i c  maximum ob- 
served in experimerlt. 

Now, let us turn to the nonstationary flow. Let the discharge va ry  according to the harmonic law 

Q (t) = O0 (t -t- a sin oO (4.1) 
(Qo = ~R~Vo, o~ = 2 n~ T) 

Here Qo and a are  constants.  Let us examine the t ransient  because of which the initial s tat ionary mo-  
tion becomes periodic.  It is easy to note that all the initial data can be expressed  in the form of three di- 
mensionless pa ramete r s  (Re0, a, w 0 = w (2R)2/p) which determine the solution of the nonstat ionary problem 
under consideration. 

The process  of building up the periodic motion occurs  sufficiently rapidly. Specific computations show 
that fluid motion becomes pract ical ly  periodic after  the lapse of 1-2 periods T f rom the initial t ime c o r -  
responding to the stat ionary motion. 

The computed velocity profi les in both the main and the near-wal l  flow domains are  shown in Fig. 2 
for  Re0=10 ~, a=0 .5 ,  w0=106 for three charac te r i s t ic  t imes in one period of oscillation (i.e., for three dif- 
ferent  oscillation phases r in steady periodic motion. Let us turn attention to the fact that r eve r se  
flows are  possible in the near-wal l  region at separate t imes in unsteady motion, although the instantaneous 
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mean veloci ty  over  the sect ion r e m a i n s  posi t ive  here  during the whole motion (a < 1). P r e s e n t e d  in Fig. 3 
a re  the turbulence energy  dis t r ibut ions for  the same  conditions. Rebuilding of the energy distr ibution be -  
cause  of the nonsta t ionar i ty  occurs  f i r s t  in the near -wal l  domain. 

Now, let  us examine the case  when the d ischarge  v a r i e s  according to the law Q =Q1 s inwt  (Q1 =~'R2vl ), 
i .e. ,  the case  when the d ischarge  in the tube v a r i e s  per iodical ly  around the zero  value.  Computations have 
shown that  for  sufficiently high values  of w 0 the m a x i m u m  value of the veloci ty  occurs  at the wall  in this 
case  (Fig. 4, Re 1 - 2 v l R / v  =0.5 �9 105, r Such a pic ture  was observed  in the Franke [3] expe r imen t s .  
As the d imensionless  f requency co d grows,  the veloci ty  m a x i m u m  continues to be shifted towards  the wall  
and the veloci ty  prof i le  becomes  a lmos t  uni form in the main par t  of the section.  In this case ,  a per iodic  
boundary l aye r  ex is t s  in the nea r -wa l l  domain, which does not a l ready enclose the whole tube c ross  section.  

Knowing the veloci ty  distr ibution,  we can calculate  the tangential  s t r e s s  on the wall by means  of the 
fo rmula  ~-0=-#~u/ar ]  r = R  and the energy  diss ipat ion by means  of (3.2). Represen ted  in Figs.  5 and 6 a r e  
the r e su l t s  of the i r  evaluation for  Re0=105 , a = 0 . 5 , f o r  r (curve 1) and for w0=104 (curve 2), where  
TO ~ and N ~ denote the tangential  s t r e s s  and energy  dissipat ion r e f e r r e d  to the i r  values  in steady mot ionwith  
d ischarge  G0, r e spec t ive ly .  

It  can be noted in Fig. 5 that  the f requency of d i scharge  fluctuation influences both the ampli tude and 
phase shift  of the tangential  s t r e s s .  

The authors  a r e  grateful  to R. T. Chernyshev for  pe r fo rming  the computat ions p resen ted  here .  
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